It was a good night to shake down a new setup ...
The forecast for Saturday night 5/10 was for intermittent clouds early on and clear skies after midnight. this forecast, coupled with the fact that there was a very bright 96% illuminated Moon up almost the entire night, made it easy to decide to shake down my Askar FMA180 Pro (click here to view a post about building this rig). The goal was to get everything working, an imaging would be a bonus.
The process started well before dark. It began when the Askar FRA600 (on loan from a friend) was removed from the mount. I took the Pegasus Astro Pocket Powerbox Advance off the Askar FRA600 rings and installed it on the Losmandy Dovetail Rail that the Askar FMA180 Pro was installed on. I have three gutter spikes in the ground where I set up my mount for imaging. The mount was leveled, then the Askar FMA180 Pro rig was installed on the mount and connected all the cables (performing some cable management to tame the mess of cables). I connected everything to my laptop and verified that all the devices could connect to NINA, adjusting COM port settings as required. The telescope was then slewed to point at the tree line across the street so the Guide Scope and the Imaging Scope could be roughly focused. I also created the PHD2 profile for this setup and took darks for the guide camera. The mount was parked and covered with a tarp.
At dusk, I came back out and uncovered the scope. The first order of business was to properly focus the Guide Scope. I used SharpCap to do this. Once focused, the mount was polar aligned. SharpCap was used for this too. The Guide Camera was disconnected from SharpCap and was reconnected to PHD2. Using the Calibration Assistant Tool, the mount was slewed to 0 declination and about 5 degrees from the Meridian. After calibration was completed, I ran the Guiding Assistant for 15 minutes and applied the recommended changes to the guiding settings. The Imaging Scope was focused by eye. I worked on multiple autofocus runs in NINA to optimize the autofocus settings. After getting the autofocus set up, I verified plate solving worked. So far so good. Dodged a few clouds here and there but everything progressed smoothly. So now what?
I started to search for imaging targets that would be a good fit for this wide field rig. The best option was IC 1396, The Elephant Trunk Nebula. I have imaged this target before with my 80 mm Refractor at 480 mm of focal length (click here to view the previous result for IC 1396). Unfortunately, this target did not clear the tree line until about 1:30 AM. Since this was the first weekend with nice weather this spring, we did a lot of yard work during the day and I did not want to stay up all night. Then it hit me, maybe this was the time to finally try the (Advanced) Sequencer in NINA. I had already download templates from Patriot Astro, but never had a need to try this functionality out. I modified the OSC template for my setup and did a quick test. It worked perfectly. I loaded in a Sequence to image IC1396 starting at 1:30 AM until about 4:45 AM. Again, it worked perfectly! I woke up the next morning and the scope was parked, the camera warmed, and 55 subs were saved to the laptop's hard drive. I was worried the subs would be of poor quality due to the 96% illuminated Moon but was pleasantly surprised after processing the image. Having said that, if the opportunity presents itself to add more exposure time to this, I will!
Here's the resulting image :
![]() |
IC 1396 - The Elephant Trunk Nebula - first light with the Askar FMA180 Pro. |
Processing:
All pre and post processing was performed in PixInsight. Pre-Processing: All subs were visually inspected with Blink and subs with issues were removed. All light Frames, Flats, Darks and Dark flats were loaded into WBPP. Linear Post Processing: Background extraction was performed with GraXpert followed by BXT (correct only). SPCC was used for Color Calibration followed by a full application of BXT. The Stars were removed using StarXT. Starless Linear: Noise was reduced with NXT. The image was made non-linear with HT. Linear Stars: The stars were made non-linear with Seti Astro's Star Stretch Script.
Non-linear Post Processing: Starless: The Narrowband normalization Process was used to get the "SHO" look. Color, intensity, and contrast were adjusted with various applications of CT. Saturation was increased with CT. The Image blend Script was used to sharpen the image with a High Pass Filter. LHE was applied at 2 Kernel sizes an the Unsharp mask was applied. The DSE script was used to enhance dark nebula regions. Stars: Saturation was increased with CT. SCNR was applied and the Correct Magenta Stars Script was used to help with stars captured with a dual narrowband filter. CT was used to adjust contrast one last time. Final: The Stars and Starless images were combined with Pixel Math to produce the final image.
What is it?
IC 1396 is a region of ionized interstellar gas and
dust that contains smaller regions of concentrated gas and dust that appear as
dark knots or globules in visible light images. The gas in the entire
region is being ionized by the bright star HD 206267 in the center of the
image. The Elephant Trunk Nebula is one of those concentrations of gas and
dust. It can be seen rising from the bottom of the image. These areas of
concentrated gas and dust, including The Elephant Trunk, are star forming
regions. Young stars within The Elephant Trunk were discovered in 2003
using infrared telescopes.
![]() |
An annotated image of IC1396 |
How Big is it?
IC1396 has a size of 170 x 140 arcminutes (1 degree is 60 arcminutes) on the night sky and is about 100 light years across.
How Far is it?
IC 1396 is located about 2,400 light-years (ly) in the
Constellation Cepheus.
How to find it?
The constellation Cepheus is located near the bright
signpost constellation Cassiopeia. Cepheus is a circumpolar constellation for
observers at mid-northern latitudes and above. This means the constellation
never sets. It is visible all night, appearing to circle the north celestial
pole currently located near the North star, Polaris. to me, this constellation
looks like a house with a disproportionately large roof. IC 1396 is indicated
in the chart by the red rectangle just off what would be the ground floor of
the house.
![]() |
Finder Chart for IC1396 |