Showing posts with label Sky-Watcher USA. Show all posts
Showing posts with label Sky-Watcher USA. Show all posts

Thursday, October 3, 2024

NGC 281 - The Pac-Man Nebula

 I wonder how many quarters I spent on Pac Man when I was a kid?

Sunday September 15th was forecast to be clear with poor transparency due to wildfire smoke and a bright Moon. Since I had a vacation day on Monday, I decided to go ahead and image. I setup with the Optolong L-eXtreme dual narrowband filter to help fight against the bright Moon. I started the evening collecting subs on another target that I had collected some data on Friday 9/14. Imaged that target until i lost it to the trees around 12:30 AM and switched to NGC 281. Struggling to get the result I want from the other data, so no post for now. NGC 281 is also known as the Pac-Man nebula as the shape resembles the protagonist of the famous video game from the 80's. I think the resemblance is slightly diminished by deeper exposures like this, as additional details are revealed. 

NGC 281, The Pac-Man Nebula from 9/15.

Processing:

All pre and post processing was performed in PixInsight. Pre-Processing: All subs were visually inspected with Blink and subs with issues were removed. All light Frames, Flats, Darks and Dark flats were loaded into WBPP. Linear Post Processing: Background extraction was performed with Auto DBE Script from Seti Astro followed by BXT (correct only). SPCC was used for Color Calibration followed by a full application of BXT. Noise was reduced with NXT. The image was made non-linear with HT. Non-linear Post Processing: Stars were removed with StarXT. Stars: Saturation was increased with CT. Starless: The Narrowband normalization Process was used to get the "SHO" look. Color, intensity, and contrast were adjusted with various applications of CT. Saturation was increased with CT. LHE was applied at 3 Kernel sizes. Unsharp mask was applied and MMT was used to increase sharpness. The DSE script was used to enhance dark nebula regions. The Stars and Starless images were combined with Pixel Math to produce the final image. 

What is it?

NGC 281 is an HII region in the constellation Cassiopeia. Like most HII regions, it contains emission nebulosity, dark nebulosity, Bok Globules, and an open star cluster (IC 1590). One of the stars in this open cluster, HD 5005, is a multiple star that is helping to ionize the gas, creating the emission nebula.

Annotated image of NGC 281.

How Big is it?

NGC 281 has a size of 35 x 30 arcminutes (1 degree is 60 arcminutes) on the night sky. It is about 41.5 light years in diameter.

How Far is it?

NGC 281 is located about 4,100 light-years (ly) from Earth in the constellation Cassiopeia.

How to find it?

It may be possible to view this object visually (I have never done so). I would suggest a nebula filter (like a UHC or H-beta filter) to improve contrast and make the nebula "pop" in the eyepiece.

NGC 281 is located near the bright star Shedar in Cassiopeia. If you draw an imaginary line connecting Ruchbah and Shedar, NGC 281 would be a little less than 1/4 of the way to Ruchbah, and a bit off the line (towards Andromeda)/

Finder Chart for NGC 281.

Image Details:

Capture Date: 9/15//2024
Location: Eden, NY
Telescope: Askr FRA600 (no reducer)
Camera: ZWO ASI2600MC Pro
Filter: Optolong L-eXtreme
Mount: Sky-Watcher USA EQ6-R Pro
Exposure: 51 exposures at 180 sec / Gain 100 / Offset 50 / -10°C each for a total exposure of almost 2.55 hours.
Software: NINA, SharpCap Pro, PHD2, and PixInsight


Clear Skies!
Ernie

Wednesday, August 7, 2024

A Tiptoe Through the Tulip Nebula

 Target Number Two from Friday 7/26

So picking up from where we left off in the last post (click here). After taking flats with no filter to match my B150 exposures, I installed the L-eXtreme filter and took flats. Then slewed the telescope to the Tulip Nebula (SH2-101) in Cygnus. Started collecting subs at 2:40 AM and stopped the sequence at 3:57 AM due to the increasing sky brightness and immanent loss of the target to the trees in the West.  Sky conditions weren't great due to the smoke from the wildfires out west. I've settled on 180 sec as the default exposure time for imaging with the L-eXtreme. Here's the resulting image:

An image of SH 2-101, also known as the Tulip Nebula, set against a starry night sky. The nebula appears as a complex cloud of gas and dust, illuminated in shades of pink and orange with hints of white, resembling the shape of a blooming tulip. It is surrounded by intricate filaments of blue and orange nebulous matter that weave through the darkness of space. A bright star shines prominently to the right side of the nebula, adding contrast to the scene.
SH2-101, The Tulip Nebula

Something cool in the image:

Any Rush fans out there? Any fans of Black Holes? The star labeled as HD226868 in the annotated image below is the star that orbits the black hole Cygnus X-1! See if you can see a very faint arch starting from the label HD226868 and arcing back towards +35°20’. It is really subtle, but it is the bow shock created by one of the relativistic jets emanating from the black hole interacting a denser area of dense interstellar medium. Cygnus X-1 is one of the strongest X-ray sources detectable from Earth and the first X-ray source to be widely accepted as a black hole. Cygnus X-1's status as black hole was the subject of a friendly bet between Stephen Hawking and Kip Thorne.

Crop of the annotated image of SH2-101 highlighting the star (HD226868) that orbits the black hole Cygnus X-1.

Processing:

All pre and post processing was performed in PixInsight. Pre-Processing: All subs were visually inspected with Blink and subs with issues were removed. All light Frames, Flats, Darks and Dark flats were loaded into WBPP. Linear Post Processing: Background extraction was performed with Auto DBE Script from Seti Astro followed by BXT (correct only). SPCC was used for Color Calibration followed by a full application of BXT. Noise was reduced with NXT. The image was made non-linear with HT. Non-linear Post Processing: Stars were removed with StarXT. Stars: Saturation was increased with CT. Starless: The Narrowband normalization Process was used to get the "SHO" look. Color, intensity, and contrast were adjusted with various applications of CT. Saturation was increased with CT. LHE was applied at 3 Kernel sizes. Unsharp mask was applied and MMT was used to increase sharpness. The DSE script was used to enhance dark nebula regions. The Stars and Starless images were combined with Pixel Math to produce the final image. 

What is it?

The Tulip Nebula (SH2-101) is a bright nebula in the constellation Cygnus. This region of gas and dust is an HII region. Unlike the Dark Nebula B150, the gas in the tulip is ionized and is giving off its own light.

Annotated image of SH2-101

How Big is it?

SH2-101 has a size of 16 x 9 arcminutes (1 degree is 60 arcminutes) on the night sky. It is about 70 light years in diameter.

How Far is it?

SH2-101 is located about 6,000 light-years (ly) from Earth in the constellation Cygnus.

How to find it?

It may be possible to view this object visually (I have never done so). I would suggest a nebula filter (like a UHC filter) to improve contrast and make the nebula "pop" in the eyepiece.

SH2-101 is located in the neck of Cygnus the Swan. About 1/2 way between the head (Albireo) and Sadr.

Finder Chart for SH2-101.

Image Details:

Capture Date: 07/26/2024
Location: Eden, NY
Telescope: Askr FRA600 (no reducer)
Camera: ZWO ASI2600MC Pro
Filter: Optolong L-eXtreme
Mount: Sky-Watcher USA EQ6-R Pro
Exposure: 25 exposures at 180 sec / Gain 100 / Offset 50 / -10°C each for a total exposure of almost 1.25 hours.
Software: NINA, SharpCap Pro, PHD2, and PixInsight


Clear Skies!
Ernie

Saturday, August 3, 2024

A Smoky Sea Horse Nebula

 It was perfectly clear, except for the wildfire smoke!

Friday 7/26 was the second night of what turned out to be a string of 4 clear nights. That was the good news. The bad news was that wildfire smoke from out west had rolled in. It would be the only night I would have any chance of imaging, so when we got home around 10 pm, I set up and was collecting subs by 11 pm. The week before I tore down my setup. I removed the dovetail saddle on my EQ6-R pro and replaced it with an ADM Saddle that was purchased at last year's NEAF. I also replaced my telescope with an Askar FRA600 that is on loan from a friend. He is unable to use the scope for a bit and generously allowed me to borrow it. I did some cleanish skies last Saturday night and was able to get focused and verify everything was working. 

The first target of the evening was Barnard 150, The Sea Horse Nebula. The 61% illuminated Moon rose around 11:38 PM. I continued to image this target until a little after 2 am, when the Moon started to clear the trees and was impacting the image quality. I took flats, popped the L-eXtreme filter in the image train, took flats with that and switched to a second target for the session. That will be another story. I captured a total of 74 exposures at 2 minutes each. Hope to get more time on this object, as I believe this will improve the result. Here's the final image. 

A view of Barnard 150, a dark nebula located in the constellation Cepheus. Resembling the shape of a seahorse, this elongated cloud of interstellar dust and gas curves gracefully from its head in the top right corner to its tail stretching toward the bottom left. The nebula stands out against a backdrop of numerous stars, creating a striking contrast between the dark features of Barnard 150 and the surrounding celestial canvas. Colors range from deep browns to faint blues, highlighting the intricate details of this cosmic wonder
Barnard 150, The Sea Horse Nebula.

Processing:

All pre and post processing was performed in PixInsight. Pre-Processing: All subs were visually inspected with Blink and subs with issues were removed. All light Frames, Flats, Darks and Dark flats were loaded into WBPP. Linear Post Processing: Background extraction was performed with Auto DBE Script from Seti Astro followed by BXT (correct only). SPCC was used for Color Calibration followed by a full application of BXT. Noise was reduced with NXT. The image was made non-linear with HT. Non-linear Post Processing: Stars were removed with StarXT. Stars: Saturation was increased with CT. Starless: Saturation was increased with CT. LHE was applied at 3 Kernel sizes. Unsharp mask was applied and MMT was used to increase sharpness. The Stars and Starless images were combined with Pixel Math to produce the final image. 

What is it?

B150 is a Dark Nebula in the constellation Cepheus. It is an interstellar cloud and dust so dense that blocks the optical or visible light behind it (from our point of view). 

An Annotated image of B150.

How Big is it?

M8 has a size of 60 x 60 arcminutes (1 degree is 60 arcminutes) on the night sky. 

How Far is it?

M8 is located about 1,200 light-years (ly) from Earth in the constellation Cepheus.

How to find it?

I'm not going to say this object can't be observed visually because I don't know. I've never attempted to visually observe this. Definitely not a target for beginners. Dark skies with excellent seeing/transparency would be required to have a chance. This object is about 1 degree in angular size, so a fairly wide field of view would be required.

This object is in Cepheus as shown in the finder chart below. B150 is between Cepheus and Cygnus as indicated by the solid red rectangle in the finder chart.

Finding Chart for B150.



Image Details:

Capture Date: 07/26/2024
Location: Eden, NY
Telescope: Askr FRA600 (no reducer)
Camera: ZWO ASI2600MC Pro
Filter: none
Mount: Sky-Watcher USA EQ6-R Pro
Exposure: 74 exposures at 120 sec / Gain 100 / Offset 50 / -10°C each for a total exposure of almost 2.5 hours.
Software: NINA, SharpCap Pro, PHD2, and PixInsight


Clear Skies!
Ernie


Friday, July 12, 2024

M8, M20, and friends from the farm across the street

 Imaging in the heart of the Milky Way ...

I have not imaged with my home rig for several months. Been imaging with the club's scopes at the observatory and life has been pretty crazy (let's not talk about the weather). Saturday 7/6 was no exception. Our club had a Public Night at our observatory. I couldn't attend due to a family commitment. Fortunately, we got home in time to do some imaging. I live in farm country and have reasonably good skies. Unfortunately, I have a lousy horizon due to the trees. So, I set up across the street in my neighbor's backyard. Their yard borders their farm fields, so the horizon is amazing. This allowed me to go for M8 & M20, something I could never get from my yard.

I got imaging so late; I'm calling this on a Sunday 7/7 image. I had to stop multiple times due to clouds. Ended up with just under 2 hours of data (114 subs at 60 sec each). Really pleased with the result. Especially for a target that is so low in the sky here.

An astronomical image showcasing three beautiful objects in the night sky. In the foreground, the Lagoon Nebula (Messier 8) exhibits intricate patterns of gas and dust, illuminated by young stars. To the left, the Trifid Nebula (Messier 20) displays its characteristic three-lobed structure, with dark lanes dividing regions of emission and reflection. Nearby, Messier 21 is a sparse open star cluster. The entire scene is a captivating blend of cosmic clouds and stellar clusters.
M8, M20, and friends from across the street from my house.

Processing:

All pre and post processing was performed in PixInsight. Pre-Processing: All subs were visually inspected with Blink and subs with issues were removed. All light Frames, Flats, Darks and Dark flats were loaded into WBPP. Linear Post Processing: Background extraction was performed with GraXpert followed by BXT (correct only). SPCC was used for Color Calibration followed by a full application of BXT. Noise was reduced with NXT. The image was made non-linear with HT. Non-linear Post Processing: Stars were removed with StarXT. Stars: Saturation was increased with CT. Starless: Saturation was increased with CT. LHE was applied at 3 Kernel sizes. Unsharp mask was applied and MMT was used to increase sharpness. The Stars and Starless images were combined with Pixel Math to produce the final image. I ended up with 2 versions one bright image and a darker version. I liked elements of each, bit was not totally satisfied with either. I ended blending both images (70% dark with 30% bright) to get the final image.  

What is it?

There is a lot going on in this image. The scope was pointed into the heart of the Milky Way. Going to focus on the three Messier objects in the image. 

Messier 8 (M8) The Lagoon Nebula. M8 is a large star forming region, some dark nebula, and a star cluster. This is giant glowing cloud of interstellar dust where stars are forming and have been formed (the star cluster).

Messier 20 (M20) The Trifid Nebula. M20is a unique combination of a star cluster, emission nebula, dark nebula, and a reflection nebula. It is called the Trifid nebula due to the tree lobed appearance.

Messier 21 (M21). M21 is an open star cluster located near M20. This is a relatively young cluster at about 4.6 million years old.

An annotated image of M8 & M20.


How Big is it?

M8 has a size of 9o x 40 arcminutes (1 degree is 60 arcminutes) on the night sky. It is 113.6 light-years (ly) in diameter.

M20 has a size of 29 x27 arcminutes (1 degree is 60 arcminutes) on the night sky. It is 43.9 light-years (ly) in diameter.

M21 has a size of 14 arcminutes (1 degree is 60 arcminutes) on the night sky. It is 20 light-years (ly) in diameter.

How Far is it?

M8 is located about 4,300 light-years (ly) from Earth in the constellation Sagittarius.

M20 is located about 5,200 light-years (ly) from Earth in the constellation Sagittarius.

M21 is located about 3,900 light-years (ly) from Earth in the constellation Sagittarius.

How to find it?

The lagoon is naked eye visible in dark sky locations. All three objects are located in the constellation Sagittarius, which is low in the South for Northern Hemisphere stargazers in the summer. Find the Teapot, they are located above (North) of the Spout of the Teapot.

A finder chart for M8 & M20


Image Details:

Capture Date: 07/06/2024 into the morning of 07/07/2024
Location: Eden, NY
Telescope: Explore Scientific ED80 Essential Series Air-Spaced Triplet Refractor
Camera: ZWO ASI2600MC Pro
Filter: none
Mount: Sky-Watcher USA EQ6-R Pro
Exposure: 114 exposures at 60 sec / Gain 100 / Offset 50 / -10°C each for a total exposure of 1.9 hours.
Software: NINA, SharpCap Pro, PHD2, and PixInsight


Clear Skies!
Ernie

Tuesday, March 12, 2024

NGC 2237 - The Rosette Nebula (Skull Orientation)

This target was way too close to the nearly Full Moon ...

The night of February 20th was just a few days before The Full Moon (2/24). Even worse, this bright Moon was in the Constellation Gemini. This meant the Moon was very close to that night's target, The Rosette Nebula. Well, I wanted to see just how well the Optolong L-eXtreme Dual Narrowband filter would perform under these unfair circumstances. Spoiler alert, it wasn't great, but it wasn't a total loss.

I got home from work and setup my rig. As we are approaching spring, it is staying light noticeably later. This takes a little pressure off when getting setup (nothing worse than setting up under a clear dark sky). It still gets dark early enough to get a decent amount of imaging before it is too late. This will change as Spring turns towards Summer. I started collecting subs (short for sub-exposures) at 7:11 PM and stopped at 10:00 PM due to clouds. Exposure time was 180 sec each at Gin 100 / Offset 50 / -10 deg C. Ended up using 44 subs (2.2 hours total exposure) to produce the image. I oriented the object to show the Skull. Please note, there is a separate deep sky object called the Skull Nebula. My daughter is a Radiology Technician and has always had a fascination with bones, skeletons, and skulls. So, I guess this is in her honor.

NGC 2237 - The Rosette Nebula. Do you see the skull?

So, what about that Moon thing? Well, it was an issue. The image below is a single exposure (sub) with Boosted Auto Stretch applied. Thankfully we have many capable tools to deal with Gradients. No doubt this gradient impacted the processing of the image, but I'm pleased with how it ended up after processing. 

Single exposure showing Gradient from the Moon.

Processing:

I did all pre and post processing in PixInsight. Pre-processing: Blink & WBPP. Linear Post-processing: Dynamic Background Extraction (DBE - see next paragraph), BlurXTerminator (correct only), Spectrophotometric Color Calibration, BlurXTerminator, NoiseXTerminator, and Histogram Transformation. Non-Linear Post-processing: StarXTerminator. Starless: Narrowband Normalization (simulated SHO), Curves (Multiple iterations to increase brightness, contrast, and color saturation), SCNR, Local Histogram Equalization, Unsharp Mask, and Multiscale Median Transform. Stars: Curves (to increase color saturation) and SCNR. PixelMath was used to screen the stars back in. 

I tried two different methods of Gradient removal. Specifically, DBE, GraXpert, and the new Gradient correction process. To my eye DBE gave me the best result. GraXpert removed too much nebula and the new Gradient Correction Tool did not seem to work well with this image. Note: This is a new tool so it could also be that I did not apply it in the optimal manner.

What is it?

The Rosette Nebula contains multiple deep sky objects, including bright nebulosity and a star cluster (NGC 2244). NGC 2237 usually denotes the whole nebula. Other objects contained in the area include NGC 2238, NGC 2239, & NGC 2246. The nebula is in the constellation Monoceros. The Nebula has a circular pattern that resembles a flower. However, it can be oriented (as shown in my images) in a way that resembles a Skull. As indicated above there is an entirely separate deep sky object known as the Skull Nebula (NGC 246).

This object is an emission nebula. Stellar winds from the hot, large, and young stars in the star cluster have carved out the central area. These stellar winds also exert pressure on the remaining gas and dust. This leads to star formation, which is actively occurring in the nebula. 

How Big is it?

This object has an apparent size of 80 by 60 arcminutes (1 degree is 60 arcminutes) on the night sky. It is 128 light-years (ly) in diameter.

How Far is it?

It is located about 5,500 light-years (ly) from Earth in the Constellation Monoceros.

How to find it?

This object is easier to photograph than visually observe. To visually observe you will need requires dark skies and good seeing conditions, specifically transparency. A wide field telescope with a large field of view is required to see the entire object, as it is 5 times the size of the Full Moon in the sky. Large telescopes (over 8 inches) can reveal the dark nebulosity contained with the object.

Even though the constellation Monoceros is relatively dim, this object is relatively easy to locate. It is roughly halfway between the bright stars Betelgeuse (in Orion) and Procyon (in Canis Minor) as indicated in the finder chart below.

Image Details:

Capture Date: 02/20/2024
Location: Eden, NY
Telescope: Explore Scientific ED80 Essential Series Air-Spaced Triplet Refractor
Camera: ZWO ASI2600MC Pro
Filter: Optolong L-eXtreme
Mount: Sky-Watcher USA EQ6-R Pro
Exposure: 44 exposures at 180 sec / Gain 100 / Offset 50 / -10°C each for a total exposure of 2 hour and 12 minutes.
Software: NINA, SharpCap Pro, PHD2, and PixInsight


Clear Skies!
Ernie




Sunday, February 18, 2024

M45 - The Pleiades

 The last in a recent string of clear nights ... but 1st a quick story:

A few years back my family was driving home from a family event on beautiful clear night. Someone remarked how beautiful the stars looked and my mother-in-law said, "oh yes, and you can really see the little Dipper!". I'm driving and trying to contain my inner Sheldon Cooper, we are driving south, there is no way she's talking about the Little Dipper. When we got home and parked the car, I asked her to show me. She pointed directly to the Pleiades. I realized it does in fact look like a min dipper. I politely explained what she was actually looking at and showed her how to find the actual Little Dipper. She was un-impressed. I don't think I ever consciously realized that M45 looks like a mini-dipper before (even though I have observed it for years). Now I often describe it in this way when describing it. Now back to your regularly scheduled blog post.

From Saturday 2/3/2024 through Tuesday 2/6/2024, we had a string of 4 clear nights. Skies weren't amazing, the transparency was not great, but the best opportunity for any astronomy related activity in 2 months or so. i got out to the observatory to image on 2/3/2024. Family and work obligations prevented me from imaging Sunday night or Monday night. Tuesday night was my last chance. The forecast was for clear skies early with the transparency turning poor/clouds around 11. Good news, it gets dark early enough to make imaging under worthwhile. Our Tuesday night imaging group was also in session. I joined from home via Zoom. 

After work, I quickly set up my scope. I had not used my home setup since October 3rd! I started collecting exposures at 7:04 PM. Since we were so close to New Moon, I decided on a broadband target, M45 (a.k.a. The Pleiades or Seven Sisters). Looking to improve on my initial result of this image from 2021. By 9:00 PM the transparency was starting to degrade. I kept imaging until 10:32 but had discard quite a most subs collected after 9:41 PM due to haze/thin clouds. Here's the resulting image. I'm pleased with result but hope to add data to this in the future, hope to pull out more of the faint background dust. 

M45, The Pleiades - from my backyard on 02/02/2024.

Showing the mini-dipper asterism. 

Processing:

All pre and post processing was performed in PixInsight. Pre-processing: Blink & WBPP (2x drizzle integration). Linear Post-Processing: GraXpert, BXT (correct only), SPCC, BXT, NXT, and HT. Non-linear Post-processing: StarXT. Stars: Curves (saturation) and SCNR. Starless: Curves (multiple for brightening, contrast, and saturation), SCNR, LHE (3 kernel sizes), Unsharp Mask, MMT, & PixelMath (to screen stars back in). Integer Resample was used to down sample the image. 

What is it?

Messier 45 is probably the most famous Open Star Cluster in the night sky. It is easily visible to the naked eye. The brightest 6 stars form a distinctive mini-dipper pattern not far from Orion. It is known by many names by different cultures around the world. If you drive a Subaru, look at the logo. Subaru ids the name for M45 in Japan. The cluster contains over 1,000 confirmed stars. The reflection nebula that surrounds the cluster is not associated with the cluster. The cluster is just passing through it and the starlight from the cluster is reflecting it, in the same way our atmosphere scatters the light from the Sun making our sky appear blue. 

Annotated version of the image of M45.

How big is it?

This object has an apparent size of 12 arcminutes (1 degree is 60 arcminutes) on the night sky. It is 16 light-years (ly) in diameter.

How far is it?

It is located about 440 light-years (ly) from Earth in the Constellation Taurus.

How to find it?

This object is easily visible to the naked eye. You won't see the beautiful reflection nebula, but the 6 brightest stars are quite bright and form a very recognizable mini-dipper pattern (asterism). It is not far from the V-shaped Hyades in Taurus. Start with the belt stars in Orion. Starting from the lowest star (Alnitak), extend through the highest star (Mintaka) for about 35 degrees (about 3-1/2 fists). Refer to the finder charts below.

How to use Orion's Belt to find M45.

A finder chart for M45 with a tighter field of view.

Image Details:

Capture Date: 02/06/2024
Location: Eden, NY
Telescope: Explore Scientific ED80 Essential Series Air-Spaced Triplet Refractor
Camera: ZWO ASI2600MC Pro
Filter: none
Mount: Sky-Watcher USA EQ6-R Pro
Exposure: 66 exposures at 120 sec / Gain 100 / Offset 50 / -10°C each for a total exposure of 2 hour and 12 minutes.
Software: NINA, SharpCap Pro, PHD2, and PixInsight


Clear Skies!
Ernie




Sunday, December 17, 2023

Experimenting at the Club's Observatory

 First off, it's been a while ... 

The last clear night that I was able to image was on October 3rd. So, apologies for taking so long between posts. The weather has been horrendous and travel for work forced me to miss the one clear night we had in November. I was super excited to see a clear forecast for Thursday night (December 14th). Our astronomy club has an imaging group, we're called the Tuesday Night Imagers. the leader of our group posted on the forum of our website that Tuesday would be Thursday this week. One advantage of winter is I can make it out to the observatory after work and get a few hours of imaging in and still get home at a reasonable time. 

We made our plans ahead of time. The plan was to try my personal camera, the ZWO ASI2600MC-Pro on the club's Celestron 14" Edge D Telescope. Our club has the 14" and a Tele Vue NP-101is mounted on an Astro Physics AP-1200 mount. We have an Atik 383L+ Color camera for the 14". A great camera, but it is an older CCD camera and is starting to show it's age. We are actively discussing what camera to get to replace it. We wish to stick with a One-Shot Color (OSC) camera for simplicity and convivence. Technically, my camera is a great match for the NP-101is but not for the 14". Even with the 0.7x focal reducer, the 14" has focal length of 2,738 mm. Therefore, my camera's small pixels result in a very over-sampled image scale with the 14". This is typically not desirable. However, we have seen some great results from similar setups and decided to give this a try. 

I got to the observatory around 5:30 pm. The observatory director, the leader of our imaging group, was unable to make it out to the observatory due to a last minute issue. Typically, the observatory director and another member of our group are the main operators of the telescope. The other telescope operator and I got the telescopes going. My camera on the 14" and the other telescope operator put his ZWO ASI1600MC-Pro on the NP-101. The observatory director and a couple of other members of our imaging group joined us via Zoom. 

The skies were not great. lots of high/thin clouds or haze especially towards the western horizon. Of course, that's exactly where we wanted to image. We wanted to get data on Comet 12/P Pons-Brooks which is near the bright star Vega. We tried for about an hour, but the data was not looking good. Autofocus was struggling and there was little signal from the comet. I have not tried to process the data from the 14" yet but the other telescope operator managed to get a nice image (especially considering the conditions). 

As it was also the peak of the Geminids meteor shower, we did try to get outside and see if we could see meteors. We saw about four or five. We also noticed skies were better towards the Southeast, where the constellation Orion was rising. We decided to give up on the comet and slew to the Horsehead Nebula (Barnard 33). We slewed to B33 and got both telescopes framed as best as we could. We were feeling the pressure to get imaging quickly, so we didn't rotate the camera or refine (manually) the relative pointing of the telescopes to one another, a disadvantage of two scopes on one mount. We dialed in our exposure settings, 120 sec subs at Gain 100 with an Offset of 50 for me and started collecting exposures. The results looked really good. The stars were nice and round. We imaged for little over an hour. It was a work night, skies weren't the best, and both of us had a pretty good drive home. This is the resulting image from the night's work. Pretty encouraging results!

The Horsehead Nebula (B33) from the BAA's Beaver Meadow Observatory on 12/14/2023.

Processing

There was a lot of conversation in our club's forum leading up to Thursday night and again afterwards regarding how to capture and process images with this scope/camera combination. We are lucky to have some talented imagers in the group, one in particular who is both very talented and technically knowledgeable. This person was a key participant in those discussions and I'm personally very grateful for his mentoring.

All pre and post processing was performed in PixInsight. Pre-processing: All 34 images were examined in Blink, 2 were rejected. The remaining 32 images were calibrated, registered, and stacked in WBPP with 1X Drizzle integration, astrometric solution, and auto-crop enabled. 

Linear Post-processing: Gradient was removed with the GraXpert script (AI mode), initial deconvolution with BlurXT in Correct Only mode, color calibration SPCC, second deconvolution with BlurXT, noise reduction NoiseXT, and the image was made non-linear with HT. Non-linear Post processing: Stars were removed with StarXT. Stars: Saturation curve applied with CT and green noise removed with SCNR. Starless: Multiple iterations of CT were applied to increase brightness and contrast, Saturation was added with CT, green noise was removed with SCNR, and noise reduction was further reduced with NoiseXT. The image was sharpened with LHE at 3 different kernel sizes and MMT. Dark structure was enhanced with the DSE script and stars were screened back in with Pixel Math. No down sampling was performed. 

What is it?

The Horsehead Nebula (Barnard 33) is a small dark nebula silhouetted against the emission nebula IC434. B33 resembles the profile of the head of a horse. It is a concentration of dust and non-luminous gas that blocks light of the nebula behind it. 

Annotated image of the Horsehead Nebula

How big is it?

This object has an angular distance of 6.0 x 4.0 arcminutes on the night sky. The object is 2.8 light-years (ly) across. 

How far is it?

It is located about 1,600 light-years (ly) from Earth in the Constellation of Orion.

How to find it?

It is located close to Alnitak, one of the 3 belt stars in Orion. This makes it easy to find. However, it is much easier to photograph than visually observe. To give you the best chance of success in visually observing it, use a large aperture telescope, use an H-beta nebula filter, and get to dark skies. It is tiny and it is essentially like trying to find a black fingerprint on a black tablecloth. Try to find the emission nebula IC 434 and look for the absence of the nebula. Photographically, this target shows up relatively easily and can be captured with and without the use of filters. 

      Finder Chart for B33

      Image Details:

      Capture Date: 12/14/2023
      Location: North Java, NY (BAA's Beaver Meadow Observatory
      Telescope: Celestron 14" Edge HD w/0.7x Focal Reducer
      Camera: ZWO ASI2600MC Pro
      Filter: N/A
      Mount: Astro Physics AP-1200
      Exposure: 32 exposures at 120 sec / Gain 100 / Offset 50 / -10°C each for a total exposure of 1 hour and 4 minutes.
      Software: NINA, PHD2, and PixInsight


      Clear Skies!
      Ernie

      Wednesday, October 11, 2023

      NGC 6888 -The Crescent Nebula

       Attack of The Floating Space Brain!!!

      Tuesday October 3rd was forecast to be our last clear night for about 2 weeks. Even though it was a work night, decided I had to get out and image something. Fortunately, the Sun is setting earlier, which means we can get some time on targets before it gets too late. Unfortunately, the 82% illuminated Moon would rise around 9 PM. Therefore, I decided to image a bright narrowband target using my L-eXtreme Dual Narrowband filter. The target selected was NGC 6888, The Crescent Nebula. I see a floating space brain. Perhaps I've watched too much sci-fi.

      NG6888 - The Crescent Nebula captured on 10/3/2023. Can you spot the Soap Bubble Nebula?

      As soon as I got home from work, I set up the telescope. Once it was dark enough, the scope was polar aligned and PHD2 was calibrated. The sequence, created ahead of time, was initiated and the first sub was taken at 8:19 PM. Tuesday night also happened to be the night our astronomy club's (Buffalo Astronomical Association) imaging group was in session. We are called the Tuesday Night imagers (even though we don't always meet on Tuesday). I was imaging from my backyard, so I joined the group at the observatory via Zoom. One of our members advised that I don't need to calibrate PHD2 every time I setup once I have a good calibration. will have to give this a try next time. Will save a little time setting up. May only need to redo calibration if my setup changes. 

      I imaged until just a few minutes past midnight, as I would be losing the target to the trees. The Sequence was timed nearly perfectly, the last sub showed a small shadow from the tree. I was already asleep, NINA parked my mount and warmed up the camera. I got up early to retrieve my laptop and put my telescope in the shed. A total of 65 subs were captured at 180 seconds each (Gain 100 / Offset 50).

      Processing:

      All pre and post processing was performed in PixInsight. Images were reviewed with Blink and the Subframe Selector Process, with a total of 10 images rejected. The 55 remaining subs were loaded in WBPP. Astrometric solution, Autocrop, & 2X Drizzle integration were enabled. Linear: The background was removed with ABE and color calibration was performed with SPCC. The image was deconvolved with BlurXT, noise was reduced with NoiseXT, and the image was stretched with HT. 

      Non-linear: The stars were removed with StarXT and here's where things get a little interesting. As a result of a conversation on the Zoom, I decided to try the Narrowband Normalization Process (Cosmic Photons) from Bill Blanshan and Mike Cranfield. Specifically, I used the HOO palate (no choice as i was using a dual narrowband filter with an OSC camera) in Blend 2 mode. This process is amazing (as my friend had indicated in our conversation). The Realtime Preview, sliders, and various selections make it easy to get the best results for your image! Stars: Applied saturation with CT, removed green noise with SCNR, and ran the Correct Magenta Stars script. Starless: Applied multiple iterations of CT to add saturation, increase brightness, and contrast. Applied LHE at 3 different kernel sizes. Applied MMT and DSE. I screened the stars back in with Pixel Math and did some star reduction with Bill Blanshan and Mike Cranfield's Star Reduction process. Finally, the image was down samples to a more manageable size.

      What is it?

      The Crescent Nebula (NGC 6888) is an emission nebula located in the constellation Cygnus. This object is formed by the strong stelar wind from a Wolf-Rayet star (WR 136). This star is losing its outer layers at the rate of the mass of our Sun every 10,000 years. This massive star is likely to go Supernova some day in a million or so years.

      Annotated image of NGC 6888.

      How big is it?

      This object has an angular distance of 20 x 10 arcminutes (1 degree is 60 arcminutes) on the night sky. The object is 25 light-years (ly) across. 

      How far is it?

      It is located about 4,700 light-years (ly) from Earth in the Constellation Cygnus.

      How to find it?

      This object is relatively easy to find. It's very close to the bright star Sadr in the constellation Cygnus. Refer to the finder chart below. 

          Finder Chart

          Image Details:

          Capture Date: 10/03/2023
          Location: Eden, NY
          Telescope: Explore Scientific ED80 Essential Series Air-Spaced Triplet Refractor
          Camera: ZWO ASI2600MC Pro
          Filter: Optolong l-eXtreme 
          Mount: Sky-Watcher USA EQ6-R Pro
          Exposure: 55 exposures at 180 sec / Gain 100 / Offset 50 / -10°C each for a total exposure of 2.75 hours.
          Software: NINA, SharpCap Pro, PHD2, and PixInsight


          Clear Skies!
          Ernie

          Sunday, September 24, 2023

          LDN 1235 - The Dark Shark Nebula

           Smile you Son of a ...

          LDN 1235 - The Dark Shark Nebula captured on 9/14/2023 & 9/15/2023

          This never happens!!! Two clear nights in a row at New Moon!!! Thursday (9/14) and Friday (9/15) were predicted to be clear, with no Moon. Therefore, wanted to go after something that was a challenge or stretch target for me and my Bortle 4/5 location, The Dark Shark Nebula. This target is very faint and requires dark skies and lots of exposure. I have pretty good skies, around Bortle 4 or 5, darker skies would be better, but figured I would give it a go. 

          Wednesday, I framed up the image using Telescopius (telescopius.com) because I wasn't able to find this object in the NINA Sky Atlas. One advantage of Telescopius is that it allows you to adjust the brightness of the image being displayed. Increasing the brightness made the Shark visible, an advantage when framing the image. I imported the coordinates into the NINA Framing Assistant and then created a Sequence so I would be ready to go Thursday night. I still use the Legacy Sequencer, although I'm preparing to give the Advanced Sequencer a try. Will use a night with a bright Moon to experiment (not risking clear nights at New Moon). 

          Thursday, after getting home from work, I quickly set up my imaging rig. Things went smoothly. Polar aligned with SharpCap Pro and calibrated the guiding software (PHD2) once skies were dark enough. Started collecting subs at 8:43 PM. Individual 2-minute sub exposures (subs) did not show any hint of the Shark, even with a screen stretch. I decided to keep collecting exposures without a change because I was shooting to the North, there's lots of light pollution to my North. Examining the subs and looking at the histogram led me to the decision to keep exposure as is. My hope was by getting enough exposures, I would be able to get the Shark. I stopped imaging at 2:23 AM, when the target would be lost to the trees. Was able to collect 130 subs on night 1. NINA parked my scope and warmed the camera. I got up earlier the next morning to bring in my laptop and cover my rig with a tarp. 

          A single 2-minute exposure (calibrated and debayered) with an unlinked auto stretch applied (no other processing). Do you see the Shark? 

          I got a later start on Friday night as I tried (unsuccessfully) to catch Comet C/2023 P1 Nishimura at sunset. Started capturing exposures at 8:54 PM. Conditions were very good again and the imaging session went smoothly. The session ended at 2:31 AM. A total of 139 exposures were captured. NINA parked the scope and warmed the camera. Retrieved my laptop in the morning and waited until late morning to put my equipment away, as everything was covered in dew. Saturday was forecast to be cloudy. Even if it was clear, I would not have been able to image due to family a commitment. 

          Image Processing

          All pre and post processing was done in PixInsight. All 269 sub exposures were evaluated with Blink and the Subframe Selector process. After this evaluation, 36 sub exposures were discarded. The remaining 233 subs were loaded into the Weighted Batch Pre-Processing Script (WBPP) along with the associated calibration (Darks, Flats, & Flat Darks) frames. This represents a total of 7 hours and 46 minutes of total exposure. I enabled 2X Drizzle Integration. This is the resulting Master Light unlinked auto stretch applied (no other processing). 

          Master Light from WBPP. Can you start to see the Shark now?

          Linear Processing: Automatic Background Extraction (ABE), Sprectrophotometric Color Calibration (SPCC), RC-Astro's BlurXTerminator (BXT), RC-Astro's NoiseXTerminator (NXT), and the image was made non-linear with Histogram Transformation (HT). 

          Non-Linear Processing: RC-Astro's StarXTerminator (SXT). Stars: Saturation was enhanced with Curves Transformation (CT) and Green Noise was removed with SCNR. Starless: Another application of NXT, the Image was brightened, and contrast was enhanced with multiple applications of CT. A mask was applied, and Saturation was enhanced with CT. Mask was removed and SCNR was applied. Local Histogram Equalization (LHE) was applied at 3 different Kernel sizes followed by Multiscale Median Transform (MMT). Dark Structure Enhance script (DSE) was used and the Stars were screened back in with pixel Math. The image was resampled down by 50% with the Resample process (making the file size a little more manageable). The image was processed 6 different times using the above process/scripts with slightly different setting each time, until the final (for now) image at the beginning of this post was obtained.  

          What is it?

          The Dark Shark is located in a section of the Milky Way that contains a lot of interstellar Dust and Gas. This object is comprised of interstellar dust and gas. Powerful winds radiating from massive stars create the "structure" or shape of this object. 

          An annotated version of the image

          How big is it?

          This Shark is about 15 light-years (ly) from head to tail.

          How far is it?

          It is located about 650 light-years (ly) from Earth in the Constellation Cepheus.

          How to find it?

          I'm honestly not sure if this object can be observed visually, if it can be observed, assuming this would be a very challenging target. My gut says this can't be visually observed. This object is located in the Constellation Cepheus. To me, it looks like a house. The Dark Shark Nebula is location is indicted by the red rectangle in the finder chart below. 

          Finder Chart for Dark Shark Nebula

          Image Details:

          Capture Date:09/14/2023 and 09/15/2023
          Location: Eden, NY
          Telescope: Explore Scientific ED80 Essential Series Air-Spaced Triplet Refractor
          Camera: ZWO ASI2600MC Pro
          Filter: None
          Mount: Sky-Watcher USA EQ6-R Pro
          Exposure: 9/14: 104 exposures at 120 sec each; 9/15: 129 exposures at 120 sec each for a total exposure of 7 hours 46 minutes. Gain 100 / Offset 50 / -10°C for both nights.
          Software: NINA, SharpCap Pro, PHD2, and PixInsight

          Clear Skies!
          Ernie

          Saturday, September 16, 2023

          M27 with a Dual Narrowband Filter

          A return to M27


          Friday September 1st was a clear night, a clear night with a very bright (nearly full) Moon. I decided to use my Optolong L-eXtreme dual narrowband filter on M27. I imaged M27 without a filter under moonless skies back in May (click here for the related post). The L-eXtreme has 7 nm band passes in both Ha and Oiii. It would be interesting to see how it would perform with an almost full Moon. This is the resulting image.


          M27 imaged with a dual narrowband filter on 9/1/2023.

          Setup went relatively smoothly. Started collecting images at 9:14 PM and stopped at 1:56 PM when clouds started to roll in (I wouldn't have been long until I lost the target to the trees anyways). I collected a total of 52 subs at 300 sec each. All pre and post processing was performed in PixInsight. A total of 45 subs were used after inspecting the frames with blink and using the Subframe Selector process. Processes used: Blink, Subframe Selector, WBPP (enabled2x Drizzle Integration and Autocrop), DBE, SPCC, BlurXTerminator, NoiseXTerminator, HT, and StarXterminator (unscreen stars). Stars: Curve Transformation (saturation), SCNR, and Correct Magenta Stars Script. Starless: Curve Transformation with mask (RGB/K), Curves Transformation with mask (saturation), SCNR, LHE, MMT, and Pixel Math to Screen stars back in. Finally, the image is significantly cropped in as this object is very small in my setup.

          What is it?

          Messier 27 (M270, also known as the Dumbbell Nebula, is a form of Emission Nebulae known as a Planetary Nebula. It has the distinction of being the first planetary Nebula ever discovered.  A Planetary Nebula is the remnant of a star, like our Sun, that is too small to end its life as a Supernova. Instead, as the star reaches the end of its life, no longer capable of fusion, the star will lose its outer shells. A hot and very dense remnant known as a White Dwarf is left behind. Even though it is no longer capable of fusion, it is hot enough to ionize the expelled shells of gas.

          How big is it?

          This object has an angular distance of 8.0 x 5.7 arcminutes (1 degree is 60 arcminutes) on the night sky.

          How far is it?

          It is located about 1,400 light-years (ly) from Earth in the Constellation Vulpecula.

          How to find it?

          This object is relatively easy to find in a pair of binoculars, optical finder scope, or telescope with a wide field of view. It is located in the Constellation Vulpecula which is a dim constellation located within the Summer Triangle. A nebula filter (like UHC or Oiii) filter can help improve contrast and make the nebula stand out more from the background sky. Use the finder chart below to help you locate it.

          1. Find the Summer Triangle (Vega, Deneb, & Altair).
          2. Method 1: 
            1. Find Albireo (a beautiful visual target itself) which is the head of Cygnus the Swan or the base of the Northern Cross. 
            2. Find Altair. 
            3. M27 is the vertex of a imaginary triangle with Albireo and Altair as the other two vertices.
          3. Method 2: (Darker skies may be required)
            1. Find 13 Vulpeculae.
            2. Find Gamma Sagittae.
            3. M27 is the vertex of a imaginary triangle with 13 Vulpeculae and Gamma Sagittae as the other two vertices.

          Finder Chart for M27

          Image Details:

          Capture Date:09/01/2023
          Location: Eden, NY
          Telescope: Explore Scientific ED80 Essential Series Air-Spaced Triplet Refractor
          Camera: ZWO ASI2600MC Pro
          Filter: Optolong l-eXtreme 
          Mount: Sky-Watcher USA EQ6-R Pro
          Exposure: 45 exposures at 300 sec / Gain 100 / Offset 50 / -10°C each for a total exposure of 3.75 hours.
          Software: NINA, SharpCap Pro, PHD2, and PixInsight


          Clear Skies!
          Ernie


          Monday, July 10, 2023

          IC 1396 - The Elephant Trunk Nebula - 07/07/2023

           It was an unexpected clear night and a Friday night too!

          Clear skies on a Friday night and daylight savings time actually working to my advantage. Noticed potential for clear skies that morning of July 7th but didn't get my hopes up too high. Got home from work, went to dinner, ran a few errands, and got home in plenty of time to setup before dark. Since the Moon was going to rise at midnight, figured it would be good to after an emission nebula so I could try out my L-eXtreme Dual Narrowband filter out with my ZWO ASI2600MC Pro for the first time. Got great results with the filter last year with my DSLR. I decided to shoot IC 1396, The Elephant Nebula in the constellation Cepheus. 

          Started capturing 180 sec subs at 10:18 PM and kept going until 4:06AM, when I went outside to take flat frames. Ended up using 79 subs, resulting in a total exposure of 3.95 hours. The image was processed in PixInsight using a Dual Narrowband "SHO" method that was provided to me by a mentor from the Buffalo Astronomical Association. This method approximates the SHO or Hubble Palette color map scheme with data from dual Narrowband filters and one-shot color (OSC) cameras like mine. 

          This is the resulting image. 

          IC1396 - The Elephant Trunk Nebula from 07/07/2023

          What is it?

          IC 1396 is a region of ionized interstellar gas and dust that contains smaller regions of concentrated gas and dust that appear as dark knots or globules in visible light images. The gas in the entire region is being ionized by the bright star HD 206267 in the center of the image. The Elephant Trunk Nebula is one of those concentrations of gas and dust. It can be seen rising from the bottom of the image. These areas of concentrated gas and dust, including The Elephant Trunk, are star forming regions. Young stars within The Elephant Trunk were discovered in 2003 using infrared telescopes.

          An annotated image of IC 1396, The Elephant Trunk Nebula.

          How big is it?

          The entire region is hundreds of light years across and spans over 3 degrees on the night sky.

          How far is it?

          IC 1396 is located about 2,400 light-years (ly) in the Constellation Cepheus.

          How to find it?

          The constellation Cepheus is located near the bright signpost constellation Cassiopeia. Cepheus is a circumpolar constellation for observers at mid-northern latitudes and above. This means the constellation never sets. It is visible all night, appearing to circle the north celestial pole currently located near the North star, Polaris. to me, this constellation looks like a house with disproportionately large roof. IC 1396 is indicated in the chart by the red rectangle just off what would be the ground floor of the house. 


          Finding Chart for IC 1396 (the red rectangle in the center of the chart).

          Image Details:

          Capture Date:07/07/2023
          Location: Eden, NY
          Telescope: Explore Scientific ED80 Essential Series Air-Spaced Triplet Refractor
          Camera: ZWO ASI2600MC Pro
          Filter: Optolong l-eXtreme 
          Mount: Sky-Watcher USA EQ6-R Pro
          Exposure: 79 exposures at 180 sec / Gain 100 / Offset 50 / -10°C each for a total exposure of 3.95 hours.
          Software: NINA, SharpCap Pro, PHD2, and PixInsight


          Clear Skies!
          Ernie

          Follow

          NGC 7635 - The Bubble Nebula - from The BMO

           Bubblicious ... Thursday November 7th & Tuesday November 12th were our club's ( Buffalo Astronomical Association ) imaging group (T...