Showing posts with label Buffalo Astronomical Association. Show all posts
Showing posts with label Buffalo Astronomical Association. Show all posts

Saturday, February 10, 2024

A Tale of Two Supernovae ... Part 2

 Saturday Night Turned into Sunday Morning ...

Picking up where we left off in part 1, we removed the L-eXtreme filter from the imaging train because we planned on imaging a broadband target, and the dual-narrowband filter would detrimentally impact the results. Dual-narrowband filters are effective for emission nebulae like H2 regions, supernovae remnants, and planetary nebulae but are not recommended when imaging targets like galaxies, star clusters, and reflection nebulae. Since we changed the imaging train, we took a second set of flats to be used with this target. It was after midnight at this point, and we agreed to image to 1 am. We opened the roof and slewed the telescope to Virgo, which was rising above the eastern horizon. Our target was a recent supernova that had occurred in the Galaxy NGC 4216. The supernova was discovered on January 4, 2024 by Japanese astronomer Koichi Itagaki, who has discovered 170 supernovae! This supernova has a designation of, SN 2024gy. 

We imaged until the agreed upon time of 1 am. We ended up rejecting the last few subs (short for sub-exposure) as the image quality was degrading due to the poor transparency. Had to be some very high thin cloud or haze, even though the sky looked clear, guiding, focus, and image quality indicated we were losing the skies. We managed to collect 7 subs at 180 sec each. The supernova, the dust lanes in NGC 4216, and many smaller background galaxies were visible in the individual exposures. Here is the resulting image: 

SN 2024gy in NGC 4216 captured on 2/4/2024 from the BMO.

An annotated version of the image indicating the location of supernova SN 2024gy.


An animated GIF of SN 2024gy in NGC 4216

Processing:

All pre and post processing was performed in PixInsight. Pre-processing: Blink & WBPP. Linear Post-processing: GraXpert, BXT (correct only), Color Calibration, BXT, NXT, & Histogram Transformation. Non-linear Post Processing: SXT. Stars: Curves (saturation) and SCNR. Starless: Curves (contrast & saturation), SCNR, LHE (3x's), Unsharp Mask, MMT, and PixelMath (to screen the stars back in).

Magnitude Estimate:

Disclaimer: I'm not an experienced variable star observer. There is a decent probability that the following methodology is flawed.

The BAA had our monthly meeting for February on 2/9/2024. After the meeting, I joined the Astrophotography breakout room, and we discussed estimating the magnitude of the supernova from the images we collected on 2/4/2024. This ended up as a fun activity for the small group of us left in the meeting. Since imaging supernova SN2023ixf in M101 in May of 2023, I've made an effort to try to learn how to estimate the magnitude of the supernova from my images. I recently joined the AAVSO and managed to cobble together and idea on how to estimate the magnitude of the supernova from stars with known magnitudes in the same field of view. The manner in which we captured images was optimized for "pretty pictures" not photometry, but the value we ended up with is pretty close to other reported values of the supernova from the same date. 

One of the other members generated a star chart from the AAVSO website. This chart depicted stars in the field of view, of which several were labeled with known magnitudes. It took some trial and error to the chart correct so it matched the field of view of our image. The first chart was off, we had used RA & Dec coordinates from Sky Safari. When we used RA & Dec coordinates from The Sky X, it finally matched the image. We think the difference may be the epoch used by each software (J2000 vs. Jnow). We visually estimated the brightness to be somewhere between 13 and 15th magnitude. Another member pulled a light curve from the AAVSO website. This light curve was compiled from member reports and indicated that the magnitude was around 13.5. We identified a star in the field with a known magnitude of 13.1. I took one of the calibrated and debayered individual sub exposures and extracted the RGB channels in PixInsight. The image was still linear, only a display or screen stretch was applied. Using the green channel, we measured the flux of the known star and the supernova using PixInsight's Dynamic PSF process. We put the resulting values into this formula:

Mag(supernova) = Mag (star) - 2.5Log(FluxSN/FluxStar)

We came up with a magnitude of 13.4 which closely matches reported values!!!! 

What is it?

SN 2024gy is a Type 1A Supernova in the Galaxy NGC 4216. It was discovered on 1/4/2024 by Japanese astronomer Koichi Itagaki. Type 1A supernovae occur when a White Dwarf syphons material from another star that it is in a binary pair with. Once the White Dwarf reaches 1.4 times the mass of the Sun, it goes Supernova. This type of Supernova is used as a standard candle and is important in determining the distance to objects in the universe.

Annotated image of the field of view.

How far is it?

It is located about 45 million light-years (ly) from Earth in the Constellation Virgo.

How to find it?

SN  2024gy is located in the Galaxy NGC 4216 which is located in the Constellation Virgo. Refer to the Finder Chart below. The tiny red rectangle in the center of the image marks the position of NGC 4216. It is very near M86, in the bowl of Virgo.

      Finder Chart for NGC 4216. 

      Image Details:

      Capture Date: 02/04/2024
      Location: Beaver Meadow Observatory (North Java, NY)
      Telescope: Celestron 14" Edge HD w/0.7x Reducer
      Camera: ZWO ASI2600MC Pro
      Filter: none
      Mount: Astro Physics AP-1200
      Exposure: 7 exposures at 180 sec / Gain 100 / Offset 50 / -10°C each for a total exposure of 21 minutes
      Software: NINA, PHD2, and PixInsight


      Clear Skies!
      Ernie


      Thursday, February 8, 2024

      A Tale of Two Supernovae ... Part 1

       Saturday Night at the Observatory

      It has been several months since we have had a clear night. It was clear Saturday night 2/3/2024 into Sunday morning 2/4/2024. Our Astronomy club’s imaging group assembled at our Dark Sky Observatory. We call ourselves the Tuesday Night Imagers, but Tuesday night can be any night of the week.  We put my camera (ZWO ASI2600MC Pro) on the club’s Celestron 14” Edge HD Telescope which is on an Astro Physics AP-1200 mount. An Optolong L-eXtreme Dual-Narrowband filter was used to target specific wavelengths of light.

      The imaging team (for the club's equipment) was our Observatory Director (Dan), a member named Mike, and me. Our target was Messier 1 (M1) a.k.a. The Crab Nebula. M1 is a supernova remnant located in the constellation Taurus. We lost some time at the beginning of the night getting things running. The Observatory had not been used (due to poor weather) since mid-December. Programs and drivers needed to be updated and we needed to fine tune the Acquisition software for this new Telescope/Camera combination. We started to acquire images at 8:40 PM and imaged until 11:30 PM when we lost M1 to the Muck near the horizon and the trees. We closed the roof and took our flat frames. Mike removed his camera from the Tele Vue NP-10is that rides on the mount with the 14" Edge HD. We replaced it with an eyepiece to keep things close to balance so Dan and I could go after one more target. We'll cover that in part 2.

      We did encounter an issue with aberrations (spikes) on our stars. We were unable to resolve the issue Saturday night. Dan and Mike returned to the observatory Monday evening, and I joined them via Zoom. After some troubleshooting, we believe the issue is caused by the Celestron Dew Heater Ring. Even with the Star spike issue, we managed to collect 13 usable subs at 600 sec each for a total exposure of 130 minutes. Here is the resulting image:

      M1, The Crab Nebula from 2/3/2024, HOO version. BAA Tuesday Night Imagers.

      Processing:

      I did all pre and post processing in PixInsight. Pre-processing: Blink & WBPP. Linear Post-processing: GraXpert, BlurXTerminator (correct only), Spectrophotometric Color Calibration, BlurXTerminator, NoiseXTerminator, and Histogram Transformation. Non-Linear Post-processing: StarXTerminator. Starless: Narrowband Normalization (two methods as described below), Curves (Multiple iterations to increase brightness, contrast, and color saturation), SCNR, Local Histogram Equalization, Unsharp Mask, and Multiscale Median Transform. Stars: Curves (to increase color saturation) and SCNR. PixelMath was used to screen the stars back in. 

      I tried to different methods in the Narrowband Normalization process. Method 2 which produces an HOO result and Method 1, which produces a result that simulates the Hubble or SHO palette. The image above is the HOO version. I prefer this version. Here is the simulated SHO version:

      M1, The Crab Nebula, simulated SHO Version. BAA Tuesday Night Imagers.

      What is it?

      M1 is a supernova remnant. Humans observed the Supernova when it occurred in 1054. It was recorded by Chinese astronomers, and it appears that the event is also depicted in Petroglyphs in Arizona and New Mexico. The Chinese astronomers referred to it as a "Guest Star". it was visible during the day for 23 days and was visible at night for 653 days. The supernova also left behind a stellar remnant known as a Pulsar. The Crab Pulsar rotates 30.2 times per second. The nebula is expanding at a rate of 1,800 km/sec.

      Annotated image of M1, The Crab Nebula. 

      How big is it?

      This object has an angular distance of 6 x 4 arcminutes (1 degree is 60 arcminutes) on the night sky. The object is 13 x 11 light-years (ly) across. 

      How far is it?

      It is located about 6,300 light-years (ly) from Earth in the Constellation Taurus.

      How to find it?

      This object is relatively easy to find. It's very close to the bright star Zeta Tauri in the constellation Taurus. Refer to the finder chart below. This is a great visual target. It can be seen in binoculars and small telescopes. Dark skies help as it is it can get lost in light polluted skies. Larger aperture helps significantly. Although visible in smaller instruments, I believe it is far more interesting to observe in large aperture scopes. Nebula filters can aid in viewing this object.

          Finder Chart for M1.

          Image Details:

          Capture Date: 02/03/2024
          Location: Beaver Meadow Observatory (North Java, NY)
          Telescope: Celestron 14" Edge HD w/0.7x Reducer
          Camera: ZWO ASI2600MC Pro
          Filter: Optolong l-eXtreme 
          Mount: Astro Physics AP-1200
          Exposure: 13 exposures at 600 sec / Gain 100 / Offset 50 / -10°C each for a total exposure of 130 minutes (2.2 hours)
          Software: NINA, PHD2, and PixInsight


          Clear Skies!
          Ernie

          Tuesday, December 26, 2023

          Starting to share my images through YouTube

           No VLOGs for now

          Starting at after Christmas, I will be trying something new. I will be sharing my Astro Photos through YouTube, in addition to the methods of sharing I use now. As of the time of this blog post (late December 2023) I don't have any intention to create VLOG style videos. I will concentrate on slide show type videos, both in long form and the short form portrait videos that all the rage with the kids these days (clearly I watched too much David Letterman in college). 

          Let the "Year in Review" retrospectives commence:

          The first video will be a slide show of the images captured during 2023. I managed to capture 14 images in 2023. Lots of clouds and smoke. Other than one week in May, when I managed to image five nights in one week, I averaged about one night per month. Happy with the progress I've been making. I've benefited significantly from the experience of members of the Buffalo Astronomical Association, PixInsight classes at Masters of PixInsight, and Astrophotography community at Astroworld

          A collage of my Astro Photos from 2023

          A link to my Youtube Channel (http://www.youtube.com/@Erniej270) has been placed on the home page for this blog. Here's the "First" video: https://youtu.be/s2teiVHLWK0



          I will also be releasing each image as "Short". The first one is of Comet c/2022 E3 (ztf). Here's a link to the at video too: https://youtube.com/shorts/CsAdih8ufRw?feature=share

          Which images from 2023 do you like the best? Leave a comment and let me know. 

          Clear Skies!
          Ernie

          Sunday, December 17, 2023

          Experimenting at the Club's Observatory

           First off, it's been a while ... 

          The last clear night that I was able to image was on October 3rd. So, apologies for taking so long between posts. The weather has been horrendous and travel for work forced me to miss the one clear night we had in November. I was super excited to see a clear forecast for Thursday night (December 14th). Our astronomy club has an imaging group, we're called the Tuesday Night Imagers. the leader of our group posted on the forum of our website that Tuesday would be Thursday this week. One advantage of winter is I can make it out to the observatory after work and get a few hours of imaging in and still get home at a reasonable time. 

          We made our plans ahead of time. The plan was to try my personal camera, the ZWO ASI2600MC-Pro on the club's Celestron 14" Edge D Telescope. Our club has the 14" and a Tele Vue NP-101is mounted on an Astro Physics AP-1200 mount. We have an Atik 383L+ Color camera for the 14". A great camera, but it is an older CCD camera and is starting to show it's age. We are actively discussing what camera to get to replace it. We wish to stick with a One-Shot Color (OSC) camera for simplicity and convivence. Technically, my camera is a great match for the NP-101is but not for the 14". Even with the 0.7x focal reducer, the 14" has focal length of 2,738 mm. Therefore, my camera's small pixels result in a very over-sampled image scale with the 14". This is typically not desirable. However, we have seen some great results from similar setups and decided to give this a try. 

          I got to the observatory around 5:30 pm. The observatory director, the leader of our imaging group, was unable to make it out to the observatory due to a last minute issue. Typically, the observatory director and another member of our group are the main operators of the telescope. The other telescope operator and I got the telescopes going. My camera on the 14" and the other telescope operator put his ZWO ASI1600MC-Pro on the NP-101. The observatory director and a couple of other members of our imaging group joined us via Zoom. 

          The skies were not great. lots of high/thin clouds or haze especially towards the western horizon. Of course, that's exactly where we wanted to image. We wanted to get data on Comet 12/P Pons-Brooks which is near the bright star Vega. We tried for about an hour, but the data was not looking good. Autofocus was struggling and there was little signal from the comet. I have not tried to process the data from the 14" yet but the other telescope operator managed to get a nice image (especially considering the conditions). 

          As it was also the peak of the Geminids meteor shower, we did try to get outside and see if we could see meteors. We saw about four or five. We also noticed skies were better towards the Southeast, where the constellation Orion was rising. We decided to give up on the comet and slew to the Horsehead Nebula (Barnard 33). We slewed to B33 and got both telescopes framed as best as we could. We were feeling the pressure to get imaging quickly, so we didn't rotate the camera or refine (manually) the relative pointing of the telescopes to one another, a disadvantage of two scopes on one mount. We dialed in our exposure settings, 120 sec subs at Gain 100 with an Offset of 50 for me and started collecting exposures. The results looked really good. The stars were nice and round. We imaged for little over an hour. It was a work night, skies weren't the best, and both of us had a pretty good drive home. This is the resulting image from the night's work. Pretty encouraging results!

          The Horsehead Nebula (B33) from the BAA's Beaver Meadow Observatory on 12/14/2023.

          Processing

          There was a lot of conversation in our club's forum leading up to Thursday night and again afterwards regarding how to capture and process images with this scope/camera combination. We are lucky to have some talented imagers in the group, one in particular who is both very talented and technically knowledgeable. This person was a key participant in those discussions and I'm personally very grateful for his mentoring.

          All pre and post processing was performed in PixInsight. Pre-processing: All 34 images were examined in Blink, 2 were rejected. The remaining 32 images were calibrated, registered, and stacked in WBPP with 1X Drizzle integration, astrometric solution, and auto-crop enabled. 

          Linear Post-processing: Gradient was removed with the GraXpert script (AI mode), initial deconvolution with BlurXT in Correct Only mode, color calibration SPCC, second deconvolution with BlurXT, noise reduction NoiseXT, and the image was made non-linear with HT. Non-linear Post processing: Stars were removed with StarXT. Stars: Saturation curve applied with CT and green noise removed with SCNR. Starless: Multiple iterations of CT were applied to increase brightness and contrast, Saturation was added with CT, green noise was removed with SCNR, and noise reduction was further reduced with NoiseXT. The image was sharpened with LHE at 3 different kernel sizes and MMT. Dark structure was enhanced with the DSE script and stars were screened back in with Pixel Math. No down sampling was performed. 

          What is it?

          The Horsehead Nebula (Barnard 33) is a small dark nebula silhouetted against the emission nebula IC434. B33 resembles the profile of the head of a horse. It is a concentration of dust and non-luminous gas that blocks light of the nebula behind it. 

          Annotated image of the Horsehead Nebula

          How big is it?

          This object has an angular distance of 6.0 x 4.0 arcminutes on the night sky. The object is 2.8 light-years (ly) across. 

          How far is it?

          It is located about 1,600 light-years (ly) from Earth in the Constellation of Orion.

          How to find it?

          It is located close to Alnitak, one of the 3 belt stars in Orion. This makes it easy to find. However, it is much easier to photograph than visually observe. To give you the best chance of success in visually observing it, use a large aperture telescope, use an H-beta nebula filter, and get to dark skies. It is tiny and it is essentially like trying to find a black fingerprint on a black tablecloth. Try to find the emission nebula IC 434 and look for the absence of the nebula. Photographically, this target shows up relatively easily and can be captured with and without the use of filters. 

              Finder Chart for B33

              Image Details:

              Capture Date: 12/14/2023
              Location: North Java, NY (BAA's Beaver Meadow Observatory
              Telescope: Celestron 14" Edge HD w/0.7x Focal Reducer
              Camera: ZWO ASI2600MC Pro
              Filter: N/A
              Mount: Astro Physics AP-1200
              Exposure: 32 exposures at 120 sec / Gain 100 / Offset 50 / -10°C each for a total exposure of 1 hour and 4 minutes.
              Software: NINA, PHD2, and PixInsight


              Clear Skies!
              Ernie

              Sunday, June 11, 2023

              Reflection in the Dark - The Iris Nebula

               It was a really good week for astrophotography!

              Starting on the night of Sunday May 21st through Friday May 26, we had a great stretch of weather for astrophotography, at least as far as Western New York is concerned. Sunday and Monday were impacted by smoke from the wildfires in Alberta, Canada. Even with the smoke, I managed to capture data on SN 2023ixf in M101 (click here). Wednesday, Thursday, & Friday had better conditions. Being able to leave my scope setup all the way through Saturday (extremely rare for our area).

              On Wednesday night I started the evening on SN2023ixf in M101 and then moved to another target (post coming soon) as I lose M101 in a tree around 1:30 AM. Not wanting to squander the clear skies I added a sequence for second target to NINA. Technically this was the morning of Thursday May 25th since it was after midnight. However, that's not how I think about it and organize my files. I started the imaging session on the night of Wednesday May 24th and carried that date through sunrise. That's the convention I follow, right or wrong. 

              On Thursday, the Moon was setting around 1:30 AM. Thought I would try for the Iris Nebula. This target is something I've wanted to image for a while, but avoided as I considered it more of an "advanced" target. As my skills have been progressing, thanks to experience, mentors in the BAA, and knowledge/skill gained form Masters of PixInsight classes, I decided to give it a shot. glad I took the chance. On Friday I did not image M101, just felt like trying something different. I didn't want to go to the Iris right way because the Moon was brighter and wasn't going to set until 1:52 AM. So imaged another target (post coming soon) until 1:30 am and then switched back to the Iris. I think Thursday night was the best night of the week. 

              The image was processed in PixInsight. It took multiple attempts to get this result, but I'm really pleased with it. Still a little unsure (due to inexperience with dust and dark nebulae surrounding the reflection nebula) I posted it on Twitter and asked for feedback. The feedback was very positive. I also shared the image with members of the imaging group within the BAA. Again, the feedback was positive. 

              For the first time since I started imaging with this Deep sky setup, the hard drive on my imaging laptop was nearly full by the end of the week. Will need to consider upgrading the storage on the laptop. This was an unusual problem to have as we almost never get that many good nights so close together. It was a really fun week chasing the supernova in m101 and imaging the Iris and the other targets I went after. Very reminiscent of chasing Comet Neowise in 2020. I hope you enjoy the image.


              The Iris Nebula (NGC 7023 / LBN 487) captured on 05/25/2023 & 05/26/23.

              What is it?

              The Iris Nebula is a fairly bright reflection nebula in the constellation of Cepheus. The reflection nebula is surrounded by lots of dust. The Iris Nebula is also known as NGC 7023, Caldwell 4, and LBN 487. Unlike emission nebulae, reflection nebulae do not emit their own light. The color comes from scattered light of its central star. Reflection nebulae are made up of very small particles, much smaller than dust particles on Earth. these particles scatter light giving the nebula its bluish color (similar to our sky).

              An annotated image of the Iris Nebula and surrounding dust. 


              How big is it?

              It has an angular size of 18 x 18 arcminutes on the night sky and is about 6 light-years across. 

              How far is it?

              The Iris Nebula is within the Milky Way at about 420 parsecs (pc) or 1,400 light-years (ly) from Earth.

              How to find it?

              This object can be observed visually as well as being a popular photographic target. Dark skies are a must. 

              Refer to the finder chart below. 

              1. Find Cassiopeia with its distinctive "M" or "W" shape.
              2. Find Polaris (the North Star).
              3. Find Cygnus or the Northern Cross. 
              4. The constellation Cepheus looks like a house and is located between items 1,2, & 3.
              5. The Iris Nebula is within the red box on the finder chart (the red box indicates the field of view of the image.
               

              A finder chart for the Iris Nebula.

              Image Details:

              Capture Date:05/25/2023 and 05/26/2023
              Location: Eden, NY
              Telescope: Explore Scientific ED80 Essential Series Air-Spaced Triplet Refractor
              Camera: ZWO ASI2600MC Pro
              Filter: None
              Mount: Sky-Watcher USA EQ6-R Pro
              Exposure: 5/25/: 60 exposures at 120 sec each; 5/26: 50 exposures at 120 sec each for a total exposure of 3.67 hours. Gain 100 / Offset 50 / -10°C for both nights.
              Software: NINA, SharpCap Pro, PHD2, and PixInsight

              Clear Skies!
              Ernie





              Monday, June 5, 2023

              Chasin' SN 2023ixf in M 101

              A star went BOOM!


              About 21 million years ago in the galaxy Messier 101, the Pinwheel Galaxy, a star went boom. It really went boom. Specifically, a Core Collapse Supernova known as a Type II Supernova, one of the most energetic events in the Universe. This particular supernova was first observed on May 19, 2023, by Koichi Itagaki. The Zwicky Transient Facility confirmed the discovery and found an image of the supernova (much fainter) from two days before the discovery observation. 


              A recent image of M 101 from before the supernova. 


              Type II Supernova Facts


              • This type of supernova occurs for stars at least 8 times more massive than our Sun and will leave behind a Neutron Star or Black Hole. 
              • Supernovae can outshine their host galaxies, releasing as much energy in a single burst as our Sun will release in 10 billion years. 
              • Many of the elements heavier than iron are created in this type of Supernovae.
              • Supernovae produce a mind bogglingly large number of Neutrinos. In 10 seconds a core-collapse supernova will release 1058 neutrinos.
              • Supernovae can accelerate particle to at least 1000 times the energy of particles in the Large Hadron Collider. 

              Good Timing


              The timing of this event was favorable for observation by amateur astronomers in the northern hemisphere due to the following factors:
              • M 101 is located just off the handle of the Big Dipper in the constellation Ursa Major. 
              • M 101 is a popular target for amateur astronomers, especially in the northern Hemisphere's spring, known to amateur astronomers as galaxy season. 
              • M101 is high in the sky, making it favorable for observation. 
              • Astronomically speaking, 21 million light years is "close" and therefore SN 2023ixf appears bright.
              This event is for those of us located in the northern hemisphere, as M 101 is near the North Celestial Pole. Unfortunate news for our friends in the southern hemisphere. I don't feel too bad for them, as they have had their fair share of amazing events and amazing objects not accessible to those of us in the north.

              A finder chart for finding M 101.

              My Observations:


              Night 1 - Sunday May 21, 2023:


              My first shot at SN 2023ixf was Sunday May 21st. The forecast was calling for clear skies. Unfortunately, the forecast was also calling for dense smoke because of the wildfires in Alberta, Canada. I set up well before dark and hoped for the best. As it got dark, the stars were slow to appear. I could make out the crescent Moon near the horizon in the west and Venus was visible a little higher in the western sky. About 10 minutes before 10 pm, I could see Arcturus followed by a few stars in the Big Dipper. The smoke was definitely impacting the visibility of the stars. I decided to connect to my guide camera and see polar alignment was possible, and it was successful. Followed this up by slewing the telescope to the south, to an object close to where the Meridian and Celestial Equator (Dec = 0) for PHD2 guiding calibration. Again, this was successful. With both tasks successful completed, it was time to go for the supernova. I recently imaged M 101 at the end of April (click here). One of my sub exposures from that session was used to frame the target, this would capture the object in the same orientation, facilitating before and after comparisons. After slewing to M 101, rotating the camera to match the previous image, and performing an autofocus run, NINA started capturing the first image. SN 2023ixf was clearly visible in the resulting image, even though the galaxy details were subdued by the smoke. NINA continued to capture exposures, and SharpCap live stacked them. I don't have the writing skills to properly convey how exciting this was. 

              Prior to starting the image session, I connected to an impromptu Zoom meeting with members of our local astronomy club, the Buffalo Astronomical Association (BAA). I was joined by our Observatory Director and a member from a sister club in Rochester, NY (who also belongs to our club). This person maintains a very useful website on supernovae (click here). It's a fantastic resource and I've used it for years before meeting him in person at our last club picnic. 

              A total of 26 Images were captured from 10:07 PM to 11:17 PM, when the conditions degraded, and it no longer made sense to continue. Exposures were 120 sec each at a Gain of 100 with an Offset of 50. The images were captured on my Home Setup:

              • Telescope: Explore Scientific Essential Series ED80 Air Spaced Triplet
              • Mount: Sky-Watcher EQ6-R Pro
              • Camera: ZWO ASI2600MC Pro
              • Filter: None
              • Accessories: Pegasus Astro Pocket Power Box Advanced, ZWO EAF, ZWO ASI224MC, Explore Scientific Field Flattener, & Orion 50 mm Mini Guide Scope 
              • Software: NINA, PHD2, SharpCap, & PixInsight

              Single 120 sec exposure. A screenshot from the capture software NINA. Only a screen (display) stretch applied, no other processing. Look how bright the supernova is compared to the galaxy. 

              The live stacked image from SharpCap. This is a a total of 26 exposures at 120 sec each for a total exposure of 52 minutes. The image was saved with the display stretch and the plug-in NoiseXTerminaror was applied in PixInsight to reduce the noise in the image.

              The final processed image. A total of 22 exposures were used (the last 4 images captured were too severely degraded to use). The image was processed in PixInsight. 

              Night 2 - Monday May 22, 2023: 


              The forecast was calling for clear skies and dense smoke. I headed out to the Buffalo Astronomical Association's observatory (Beaver Meadow Observatory) for our weekly imaging group session. The group is called the Tuesday Night Imagers, but "Tuesday" can be pretty much any day of the week. This week it was Monday. I set up my ZWO ASI2600MC Pro on the club's Tele Vue NP-101is and another member setup his ZWO ASI1600MM Pro on the club's Celestron 14" Edge HD Telescope. Both scopes sit atop an Astro Physics AP1200 mount in our main observatory. The club's Observatory Director is the leader of the Tuesday Night group. He was traveling, so another member and I were running the session in his place. We made a couple of critical errors which will make getting anything off of the 14'" scope a challenge. The first issue is the OAG prism wasn't properly lined up with the imaging camera's sensor. This resulted in a prominent shadow in the corner of the exposures. Compounding this error, we took flats at Bin 1, which does not match our light frames taken at Bin 2. There may be a way to salvage the data, but that will have to wait for another day. 

              In addition to running the Tuesday Night session in place of the group's leader, we had an unusually large turnout due to the excitement of the supernova. Unfortunately, the smoke was very dense. most left around 10:30 PM. The supernova was visible in exposures but hardly any detail of the galaxy. Two of us stayed behind to troubleshoot the shadow issue on the 14". We continued to take exposures. We experienced a brief window where the smoke was not so dense. We captured images in both scopes for about a half an hour. After which we shut everything down and went home. 



              BAA members setting up outside the observatory to observe/image the Supernova.

              The Moon and Venus

              Another view of the Moon and Venus

              The Moon and Venus over our (the BAA) newly acquired Sky shed Pod.

              A photo of the screen showing a single 120 sec exposure of from the NP-101is when the smoke briefly cleared.  BAA Tuesday Night Imagers.

              A photo of the screen showing a 120 sec exposure from the 14" Edge HD.
              BAA Tuesday Night Imagers.


              Processed image captured on the NP-101is. Image was processed in PixInsight. BAA Tuesday Night Imagers.



              Night 3 - Wednesday May 24, 2023


              Conditions were much better on Wednesday May 24th. My scope (Home Setup) was still setup from Monday Night. I imaged from dark until about 1:30 AM, when I lost this object to a tree. Unfortunately, after processing the image, I accidentally deleted the raw data while moving files to a backup hard drive, as the hard drive on my imaging computer was getting full. Needless to say, I'm not pleased with myself about this mistake! This image was made from a total of 85 exposures at 120 seconds / Gain 100 / Offset 50 each for a total exposure of 2.8 hours. Processing was done in PixInsight. 





              Night 4 - Thursday May 25, 2023


              Conditions were very good again on Thursday May 25, 2023. Another image from my home setup. I imaged from 9:52 PM until 1:27 AM. Conditions were good enough that I continued to image another target (while I slept) after losing M 101. That will be covered in a future post. As the Moon was getting brighter and setting later, I decided to back off on my exposure time from 120 seconds to 60 sec. This image was made from a total of 145 exposures at 60 sec / Gain 100 / Offset 50 for a total exposure of 2.4 hours.



              Putting all together in a Movie/Animation

              Starting with my image of M101 from 4/26 (before the Supernova), I Star Aligned the processed images from each night using PixInsight. Then cropped them with Dynamic Crop in PixInsight. Photoshop was used to add the markers, the text, and to create the animation. Each frame has a 2 second duration. I converted the animation from a GIF to a MP4 movie file. Hope you like the result.


              So, What's Next?

              SN 2023ixf will be visible for a few more weeks. It will slowly dim.  Will probably try and capture some more data if time and weather allow. Our Observatory Director and the person from the Rochester club that maintains the supernova website both provided me with information on how to determine the magnitude of the Supernova from my images. I intend to sit down and learn how to do this. When, not sure. When I do figure it out, I'll make another post or amend this one. 

              Clear Skies!
              Ernie








              Follow

              NGC 2237 - The Rosette Nebula (Skull Orientation)

              This target was way too close to the nearly Full Moon ... The night of February 20th was just a few days before The Full Moon (2/24). Even w...